Tag Archives: Logical Consequence

일계논리의 건전성과 완전성

일계논리언어 \(\mathcal{L}\)에서 논리식 \(\phi\)가 논리적으로 유효하다(logically valid)는 것은 임의의 \(\mathcal{L}\)-구조 \(M\)과 \(M\)에서의 임의의 값매김에 대하여 \(\phi\)의 값이 \(\mathrm{T}\)가 되는 것을 의미한다. 만약 \(\phi\)가 문장이면 \(\phi\)의 참거짓 여부는 값매김에 영향을 받지 않고 오직 구조에 의해서만 결정된다. 그러므로 다음을 얻는다. 문장 \(\phi\)가 논리적으로 유효할 필요충분조건은 임의의 \(\mathcal{L}\)-구조 \(M\)에 대하여 \(M \models \phi\)인 것이다. 위 정리에 의하면, 논리식 \(\phi\)가 논리적으로 유효하지… Read More »

명제논리의 구문과 의미

명제논리(propositional logic)란 간단히 말하면 명제변수와 기본 결합자(부정, 명제합, 명제곱, 함의), 그리고 몇 가지 공리와 추론규칙으로 이루어진 논리계를 뜻한다. 명제논리에서는 한정기호를 사용하지 않으므로 명제논리에서 다룰 수 있는 내용이 그렇게 다양한 것은 아니다. 그러나 추론 정리, 완전성 정리, 건전성 정리 등 더 복잡한 논리계를 다룰 때 기본적으로 만나는 정리들을 명제논리에서도 만나게 되므로, 명제논리는 수리논리를 공부하기 위해 기본으로 거쳐야 할 관문이다.… Read More »