Tag Archives: Cantor

슈뢰더-베른슈타인 정리

유한집합의 경우 두 집합의 크기를 비교할 때에는 원소의 개수를 세어 비교하면 된다. 그러나 무한집합의 경우 원소의 개수를 끝까지 셀 수 없으므로 다른 방법으로 두 집합의 크기를 비교한다. 두 집합 \(X,\) \(Y\)에 대하여 일대일 대응 \(f : X \to Y \)가 존재할 때 \(X\)와 \(Y\)는 대등하다(equipotent) 또는 동등하다고 말하고, 이것을 기호로는 \(X \approx Y\)로 나타낸다. 책에 따라서는 두 집합… Read More »